

Wastewater treatment in Minnesota: History, pollutant limits, permits and challenges

Rebecca Flood	Assistant Commissioner
Wendy Turri	Municipal Wastewater Manager
Steve Weiss	Effluent Limits Unit Supervisor
Nicole Blasing	Municipal Wastewater Permits Superviso
Jean Coleman	Associate Legal Counsel

What we'll cover

- 1. Wastewater treatment
- 2. Standards to pollutant limits
- 3. Permits
- 4. Legal challenges
- 5. Summary

History of wastewater treatment in Minnesota

Wendy Turri

Manager of Municipal Wastewater

Why we treat wastewater

Weir, Fourth Street South, Outlet, Minneapolis Average discharge, 1,570,000 gallons per 24 hours

Protect human and environmental health

- 1920s: Twin Cities dumping more than 1.5 million gallons of raw sewage into Mississippi River EVERY DAY
- 1930s: Mississippi River "dead" in Twin Cities – failed to support fish and other aquatic life
- 1950s: Half of metro area's drinking water contaminated by sewage

- Legislature created MPCA
- 1st MN water quality rules
- Primary treatment required

- Grants program
- Operator training

• Operator training

1960s	1970-1980s	1990s	2000s	2010s
 Legislature created MPCA 	 Federal Clean Water Act 	 Focus on un- sewered areas 	 Strategy to reduce phosphorus 	
 1st MN water quality rules 	 Water quality standards nationwide 	 Pre-treatment program 	• TMDLs	
 Primary treatment required 	Permit requiredTechnology	 Biosolids program 		
	based LimitsGrants program	 Change from Federal grants to state loans 		

• Operator training

1960s	1970-1980s	1990s	2000s	2010s	
 Legislature created MPCA 	 Federal Clean Water Act 	 Focus on un- sewered areas 	 Strategy to reduce phosphorus 	 Water Quality Based Effluent Limits 	
 1st MN water quality rules 	 Water quality standards nationwide 	 Pre-treatment program 	• TMDLs	 Nutrient reduction 	
 Primary treatment 	 Permit required 	 Biosolids program 		strategy	
required	 Technology based Limits 	 Change from Federal grants to 		 River eutrophication standards 	
	 Grants program 	state loans		 Approach on 	
	 Operator training 			watershed as a	9

9

whole

Who's on a wastewater treatment system?

Municipalities – today's focus

- 736 municipal wastewater treatment plants in Minnesota
- Map: 4.4 million of state's 5.5 million population on a municipal system

Industries

• About 700 plants in state

Rural homes and businesses

• 534,000 on-site septic systems

Who regulates wastewater treatment?

Federal Clean Water Act Section 402

Title 40 Code of Federal Regulations

Regulations to implement and administer NPDES Program

Delegation of NPDES program authority to states CWA section 402(b) & CFR Part 123

MPCA runs program in Minnesota

NPDES: National Pollutant Discharge Elimination System

Original goal: Eliminate discharges to lakes and streams

Who regulates wastewater treatment?

Minnesota Statute Ch. 115 and 116 charges MPCA:

 "to adopt, issue, reissue, modify, deny, or revoke, enter into or enforce reasonable orders, permits, variances, standards, rules, schedules of compliance...in order to prevent, control or abate water pollution, or for the installation or operation of disposal systems..." Permitting regulations are found in Minnesota Rule chapters:

- 7001 Permit required & procedural requirements
- 7041 Biosolids
- 7049 Pre-treatment
- 7053 Effluent limits
- 9400 Certification

How is wastewater treated?

What are preliminary and primary treatments?

What is secondary treatment?

What is tertiary treatment?

Biological nutrient removal

- Removes phosphorus and nitrogen:
 - 0.5-2.0 mg/l total phosphorus
 - 5-10 mg/l total nitrogen

How is wastewater treated?

What are the types of treatment plants?

50% use pond system

 Stabilization or aerated ponds

25% use aeration

15% use soil-based system

10% use trickling filters

How well are municipalities doing?

Two examples of success: Mississippi and Minnesota rivers

Total phosphorus from NPDES Wastewater Facilities in the

Total phosphorus from NPDES Wastewater Facilities in the

How well are municipalities doing?

- Inspections find 82% in compliance with their permits
- 18% non-compliant
 - Effluent violations
 - Releases of untreated wastewater
 - Serious operational or maintenance issues

How much are communities paying?

Monthly Sewer Bills for Greater Minnesota Communities (\$)

Population	Average	Low	High	Range		
Under 500	30.67	1.67	102.05	100.38		
500 to 999	35.79	8.17	116.00	108.87		
1,000 to 2,499	37.56	12.50	96.90	84.40		
2,500 to 4,999	36.25	13.50	83.00	69.70		
5,000 to 9,999	40.67	10.25	88.33	78.09		
10,000 to 24,999	33.09	15.37	46.50	31.13		
25,000 and up	26.91	16.42	42.69	26.27		

Monthly Sewer Bills for Met Council Enviro Services (\$)

All metro service areas	Average	Low	High	Range
	23.23	10.23	56.00	45.77

What about the future?

Questions so far?

From standards to pollutant limits

Steve Weiss

Supervisor of Effluent Limits Section

Standards vs. Limits

Standard

- Ambient water quality goal
- Lake or river water quality target

Limit

- Effluent goal
- Legal requirement in permit to meet water quality standard

Basic example - toxics

Critical details

- Concentration (background, effluent, resulting)
- Flow (critical river flow, facility design flow)

Other details (statistics)

- Effluent variability
- Exceedance frequency never, 1x every 3 years, other
- Timing/Seasonality

Basic example - toxics

If resulting water quality

1) at or below concentration of water quality standard – **no limit**

Exceeds concentration of water
 quality standard – must include limit in
 new permit

• 40 CFR 122.44(d)(1)(i)

Basic example - toxics

Details *not* typically required for toxics limit analysis

- Geography, downstream waters
- Other sources
- Changes in river flow and background concentrations through time

Phosphorus

The river isn't constant! Flow changes Phosphorus concentration changes Algae growth changes

3) Resulting Water Quality

Statewide look at river eutrophication standards

Response potential

Response potential

Response potential

Flow, phosphorus, and algae

Same phosphorus, changing concentration

Waste water treatment plants discharge the same amount of phosphorus year round, but the concentration of phosphorus in our lakes, streams, and rivers depends on how high water levels are and how fast that water is flowing.

April - May

High water flow

Water is full of sediment that has high levels of phosphorus, but the water is moving too fast and is too dark for algae to grow.

June - July

Average water flow

Water has low sediment levels and average concentration of phosphorus. Water quality is not harmful to people and pets, or fish and aquatic life.

August - September

Low water flow

High phosphorus concentration from point sources, slow moving water, and warm temperatures lead to algae growth. Algal blooms can be unsafe for people and pets, and harmful to fish and aquatic life.

[not to scale]

Annual phosphorus loads

Contributions when algae flourish

Minnesota Rule 7053.0205, Subp. 7.C cont.

When setting the effluent limit for total phosphorus, the commissioner shall consider the discharger's efforts to control phosphorus as well as reductions from other sources, including nonpoint and runoff from permitted municipal storm water discharges.

North Fork Crow River

Improvements due to limits

Excerpt from staff email (July 26, 2017)

At Cannon meeting last night one of the Byllesby locals was praising our driving of "dramatic water quality improvement." He noted that the water is as clear as he's ever seen it; he's lived there 30-40 years.

We talked about the WWTP reductions and the carp removal efforts. Certainly other variables in play e.g. residence time. But overall good to hear.

Improvements due to limits

Improvements due to limits

Summer total phosphorus for Minnesota River at Jordan

Summary of how MPCA translates standards into limits

- 1. We use data
- 2. May consider other pollutant sources
- 3. Our final target is defined by limiting nuisance algae, not a pre-settlement condition

Minnesota has made some big improvements,

but we still have work to do on point sources

Questions so far?

